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UNSTEADY PROPAGATION OF A DISK CRACK IN A 
TRANSVERSELY ISOTROPIC MEDIUM* 

E.V. LOBANOV 

The axisymmetric problem of unsteady disk crack propagation in a trans- 
versely isotropic medium is solved. The general problem of dynamic crack 
motion under the action of given loads is made to close by introducing a 
fracture criterion. Estimates are presented for the displacements in 
unloading waves emitted by the growing crack. The results obtained can 
be utilized to set up a quantitative relation between acoustic emission 
pulse parameters, the characteristic crack dimension, and the velocity of 
its motion. 
Problems on the motion of cracks with variable velocity in isotropic media 
were examined in /l-3/. 

1. Consider a homogeneous transversely isotropic medium with a crack, loaded along the 
axis of elastic symmetry by stresses u (r, t) . The axisymmetric motion of such a medium obeys 
the equations 

Cl2 (Au - +)+ CIpg + XC&& - g =O (1.1) 

xc*2 +ft)+-Cl~A~:+Cgt$ -$.+O 

Here U, w are the components of the displacement vector in the direction of the axes r,z 
the z axis is directed along the axis of symmetry and is orthogonal to the crack surface,whose 
initial diameter is 2R,,and Cj, and p are the elastic moduli and mass density. Well-known 
constraints resulting from the condition for the elastic strain energy to be positivedefinite 
are imposed on the constants Cj,. The relations required below, which connect the stress 
and displacement, have the form 

(1.2) 

We will represent the general solution of the problem in the form of a sum of thesolution 
of problems on the tension of a medium without a crack and the problem of wave radiation by a 
crack on whose edges the following stresses are given 

a tl = 0, a,, = -a0 (r, t) when z = f 0, 0 < r < R (t) (1.3) 

where the velocity of crack propagation is arbitrary, but constrained by the condition R'(t)< 

CR, where Cs is the Rayleigh wave velocity. The solutLon of the first problem is triv- 
ial, while the solution of the second satisfies the homogeneous initial conditions u=u'= 
w = w' = 0 for t< 0 and the boundary conditions 

c,z =O,w=O when.z=O,R(t)<r<m (1.4) 

resulting from the symmetry of the problem about the plane 2= 0. Moreover, satisfaction of 
the radiation condition and the condition at the edge is necessary to ensure that thesolution 
of the second problem is unique. 

We apply the Laplace and Hankel integral transforms to equations (1.11, displaying the 
difference between the originals and transforms by explicitly writing down the arguments. 
Consequently, the transform of the components of the displacement vector take the form 
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We assume the stxesses u, to be given in the whole 3 ==O plane; then by using the 
boundary conditions IL.3) and (1.4) we find the unknown spectral functions A, and A, 

For our further analysis it is necessary to factorize the function S@lq) into i30 fa~~tors, 
one of which has RO sfnqu;taritL=zs in the upper ha3f-plane, and &e other in the lower half- 
plane. The functions & (8) and ,Vt &) are analytic in the complex plane s-p& with twosemi- 
infinite slits f-in,--iC,,,t,[fC,,,,im) and two infinite slits Is,, &), I$, s,f, where the branch 
points Sl,l axe determined by the inner radical in al, (8). Let us select those branches of 
the functions which are positive for I s 1 < G,,. 
the s plane outside the slits fK$, if&), [-if&,-X,]. 

The function (XI +&),)IR {s)is analytic in 
It has simple poles at the points s== 

figa defined by the Rayleigh egxration R&f = 0. as s+o3 

(& + hp) II-' (4 - yp = (cB* + c:j w,*cg* (C, + C,)sT~ 

Taking this into account and using a Cauchy type integraL (transferring the contour of 
integration to the edges of the slits), S {s) can be represented in the form 

s (8) = s* fs) s_ fst VI 0 = Y&&P Q..s, 

8, (s) = (8 f tc$la(s f ic#* (8f icR)"D& (is) 

D,(is)-~=pl~~~(r)ej~~-l~~~ 
6. 

2. We will solve (1.7) in combination with conditions (1.3) and CL.41 by KOstrov'S 
method /I/- We introduce the new functions 

F ((I, p) = s+ (PM ox, G7. Ph G (q, P) = ST‘" 0119) P'w (qt P) (2.11 

uzz (4, p) = 02, (9, 0, P). UJ (q, P) = 10 tq9 -i-R P) 

Then (1.7) can be rewritten as 

F iqt p) tC,l@ f W’* -t- G fq, P) =I 0 (2.2) 

we apply inverse transformationg, to relations (2.1). Performing the contour integration, 
we obtain. using the discontinuous GJeber-Shafkhcsitlinintegxaland the multiplication theorem 
for the zero-ozcler Rankef function /4/, 

Inverting thetransforms (2.3) and (2.4), we find 



From (2.3)-(2.6), in which we have used the following notation 

*I 

Z(A,r,s& 5 A K (r)r t - ~1 B (4 dq 
0 

a (s) = (s - C&l (C, - sp (s - CJ/~, B(s) = q $ (ST - qy/ 

x=(G - CR)LI? ( CZ - C&I, c(r) = (q* + r* - 2rq cm cp)‘ld 
it follows that 

F (r, t) = -f (r, t), f = Lo,, 0 < r < R (t) 

G (r, t) = 0, R (t) ( r < 00 
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(2.6) 

(2.7) 

(2.8) 

The operator L is defined by (2.3). 
Therefore, the problem has been reduced to finding a function F(r, t) from (2.2) and the 

boundary 
Let 

conditions (2.8). 

and make 

us apply inverse integral transforms to (2.2). We use the Gegenbauer formula /4/ 

JO(CN Jo(rtl)=+[JoI~~ (r,r)~]dtp, XI (t, r) = (r2C2* + r2 - 2TCg cos cp)“~ 
0 

the change of variables x1 (t, rJ = r. We hence have 

t. r.+C*(la--l) 

,s ,+c5.- )I 
F (r, t) [C,l (t, - t)” - (rO - r)aJ-‘/* [(rO -+ r)2 - C22 (to - t)*]+ r dr dt = - ‘/2nG (re, to) (2.9) 

t 

Let us consider the case when r0 > C,t,, > R (t,). We introduce the characteristicvariables 
& 5: c,t - r, q = C,t + r. Then the equation q = R, (E), or q - E i= 2R P/&, (q -i- E)l, determines 

the law of crack edge motion in (E,q) coordinates. We use the notation q1 = q - C,t,, & = 
C2t0- E and we rewrite (2.9) in the form 

C&--Ea 

s (El2 - ro2)-Q &l 1 F (&to - &I, C2t0 + ql) (L + a) ha - ql’)“‘a dq, = 0 (2.10) 
T0 b--Cdl 

for ‘lo > R, (6). With respect to the inner integral, (2.10) is an Abel integral equation. 
Solving it for &, we obtain an equation of the same type. Inverting this for qI we 
express the function F on the continuation of the crack in terms of its value f on the crack 

The integral with respect to v can be evaluated explicitly. Differentiating theremain- 
ing integral with respect to the parameter rq and changing to physical variables, we find 

A(h) 

F (r.0. to) = ’ s ( ro - I CR (4) - 4’2 
n Vro-KTi;i rpcJ, 

f r,to -4 x CZ r. - r (&J I+ (2.12) 

where t, is the solution of the equation 

C&I - R (tJ = Crto - r0 (2.13) 

The relationship (2.12) agrees with the corresponding equation from /l/ to within the 
radical in the integrand. 

3. It was assumed when formulating the problem that the law of crack motion is given 
arbitrarily. To solve the problem of crack propagation under the effect of given forces, the 
asymptotic form of the stresses at the crack edges must be determined. 

R’ (to) (to - 
We set R .(tl) - R (to) - 

tl) as r0 + R (t,) + 0. Using (2.13), we find 

tl _ t, - [r, - R (to)1 IC, - R’ (t&l-’ 
R (t,) - r,, - C, b,, - R (to)1 IC, - R’ (ta)l-’ 

Substituting these estimates into (2.121, we obtain 

F h, fd - Kt (IT) G!n [To - R (to)])-“* (3.1) 
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Hence, we see that the asymptotic behaviour of I; (rot to) as r0 + R (to) + 0 is analogous 
to the asymptotic form of the stress qzz (r,,, 0, to) - KI (t,,) (2n [rO - R (te)lV* at the crack edge. 
Using (2.5) and (3.1) we find the dynamic stress intensity coefficient 

&(R’)=K,(R’) t(4)“’ [I- VI’* x (3.2) 

n t.c, 

:I-- 
t ; : H) 

1”’ r-‘/a dr@ (s) dtl d-s dr dtp, 
! 

r0 -+ R (to) + 0 

where a(s),~(s),~(R) and D+(s) are determined by (2.7) and (1.8), while the variables of int- 
egration r, q are connected by the relationship 

rR' (to) = R (to) - [qla + Ra (to) - 2R (to) q cos (pl”* 

To close the crack propagation problem, we use the Irwin force criterion 

Kl (R’) = KxD (R’) (3.3) 

where KID is the crack resistance under rapid fracture, which is a standard function of the 
crack velocity for a given material and is determined from experiment/5/ . Here KID and the 
energy intensity y being liberated during crack growth are connected by the relationship 

Y (IF) = I? UWWW)IK:D P-1 

The dimensionless function of the Crack velocity which becomes unbounded as R’(t)-+Cfi is 
denoted by I'@') . The crack should be stopped when the stress intensity coefficient is 

KI Q min KID. Therefore, (3.3) determines R = R(t) from the action of arbitrary axisymmetric 
forces applied to its edges. 

4. TO describe the waves emitted by a moving crack we represent the transform of the 
displacements (1.5) in the form 

m (9, 21 P) = u (9, 2, P) a,, (% 0, $9, w (% s, P) = w (Q, 29 P) arr b?, 07 P) (4.1) 

where the stresses u,, on the continuation of the crack are determined by (2.3),(2.5) and 
(2.12). We write the originals Of the functions U, W as follows 

V (r, 2, t) = j JI (qr) dq & 

1 

B, exp (- q&z + qts) ds 
0 

(4.2) 

W(r.z,t)=~l.(qrjdq& ’ 
2 

SF p,Bk exp (- q&z + qts) ds 
0 , -1 

where I is the Mellin-Bromwich contour, hk (s), pk (a), Bb = qAka,,-’ are determined by (1.5),(1.6), 

and s = plq. We will estimate the inner integral by the saddle-point method. We consequently 
obtain 

1 2 

~(++'@J'~~sQ~~ I(w) - -q-"Xkx, pkBkP,: sinQ,; (4.31 

P & = (‘/2 jt 1 Zfk” (iTJ I)‘/‘, Q,, = Q 1%. - -1, (oh)] - ‘,‘a qe 

cpo= arg fr"(LTk), fk =-f/z -h,(s) 

The saddle point sk = +hL is determined from the equation fk’(S)=O. 

Substituting I (u) and I (lu) into (4.21, we obtain integrals with respect to q which can 

be expressed in terms of Gauss’9 hypergeometric functions ,Fr (a, b; c; z). However, we assume 

that 9r>l. Then replacing the Bessel function by an asymptotic formula for large VdUeS 

of the argument, we can write U and W in the form 

2 

U (r, z, t) - - is P,B,-&Jk(r, z, t) 
I 

2 

W(r,z,t)-- x %h,~,& 
k-l 

(4.4) 
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J, (r, z, t) = j Tk (4 dq, q. fq) = q-l ms (~~1 cog ( qr - + j 
0 

We will assume the frequency passband of the recording apparatus to be constrained to 
the band 611 < 0 Q 01. Let AT be the observation time which is sufficient to record these 
freauencies, where Ar>mar (2sc/o,,2x/(o, - o&. We shall also assume that AT< 2, where 

t is the time of wave packet propagation to the vibration-receiver. Then we can 

m 

Jk (r, 2, t) z 
s 

Tk(Q)&* qi-& 

Pi 

write 

instead of the improper integral in (4.4). 
Inverting (4.11, we obtain formulas for the displacement in the far zone 

u (T, 2, t) = U (r, 2, t) ** u,, (r, 0, t) 

w (r, z, t) = W (r, z, t) ** u,, (r, 0, t) 
i nL 

A@, t) **B(r, t)=+ 
sss 

A (q, T) B [(qe + r* - 2rq cm cp)“*, t -T] q dq dq do 

000 

(4.5) 

The limit of integration L(t) is determined by the boundaries of the domain 
limits the stresses uI,(r,O, t) are non-zero. 

Note that the relationships obtained are found for times when multiple wave 

within whose 

diffraction 
by the crack edge is not taken into account. For later times (for a more accurate estimate 
of the energy travelling to the crack edges) the analysis of the problem is more complicated. 
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WITH PLANE INTERNAL AND EDGE CRACKS * 

V.K. VOSTROV 

A brittle half-space with one or two symmetric plane edge cracksexperiencing 
plane strain is considered. Compressive stresses act at infinity to cause 
superposition of opposite edges of the cracks (crack) and their mutual slip. 
Moreover, biaxial tension at infinity is considered for an unbounded brittle 
body with a plane crack. The body is under plane strain conditions and is 
stretched in two mutually orthogonal directions, one of which agrees with 
the direction of the crack. Limits of applicability are determined for 
the solutions of these problems by utilizing a well-known fracturecriterion 
/l-4/, and a more general solution is given, resulting in a technical 
strength condition for the brittle bodies under consideration when there 
is no mutual displacement of the crack edges. 

1. General remarks. The generalization is made on the basis of the following prin- 
ciple /5/: all volumes included with a sphere of diameter 

(1.1) 

are equally strong if the maximum (el) and minimum (es) relative elongations of the diameters 
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